\qquad
\qquad Pd. \qquad Date: \qquad

STAAR Science Tutorial 02
 TEK 8.5D: Chemical Formulas

TEK 8.5D: Recognize that chemical formulas are used to identify substances and determine the number of atoms of each element in chemical formulas containing subscripts.

Chemical Formulas

- A chemical formula is a description of the number and kind of atoms found in a single molecule of a substance, using the symbol for each element and a subscript number to state the number of atoms of the element to the left of the subscript.
- Scientists use chemical formulas such as NaCl instead of common names (table salt) or chemical names (sodium chloride) because it is shorter, more accurate, and universally understood.
- Examples of chemical formulas include $\mathrm{H}_{2} \mathrm{O}$ (water), CO_{2} (carbon dioxide), $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (vinegar), NaHCO_{3} (baking soda), NH_{4} (ammonia), and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose).

- If asked how many different elements are in a chemical formula, remember that each element symbol starts with a capital letter. But be careful to not count an element twice if repeated in the formula. In $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, there are only three elements, carbon, hydrogen and oxygen, even though there are four capital letters. (The H symbol is repeated twice in the formula.)
- To count the total number of atoms in a formula, count each symbol without a subscript number as one atom, and then add together all of the subscript numbers. In $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, there are 8 atoms: four hydrogen (H), two carbon (C) and two oxygen.
- If part of the formula is enclosed in a parenthesis, with an outside subscript number to the right of the parenthesis pair, the subscript number should be multiplied by the subscript numbers for each symbol within. For example in $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ there are a total of 8 atoms: one carbon (C), one oxygen (O), two nitrogen (N) and four hydrogen (H).

Practice Questions

Write E for Element or C for Compound for each example (\#1-5):

1. \qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}$
2. \qquad SiO_{2}
3. \qquad 4. \qquad Fr
4. \qquad NaCl
5. Write an example of an element using its name and symbol:
6. Write an example of a compound using symbols: \qquad
7. How many elements are in Asbestos $\mathrm{H}_{4} \mathrm{Mg}_{3} \mathrm{Si}_{2} \mathrm{O}_{9}$: \qquad and name the elements: \qquad
8. $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$: How many elements are in the reaction to left (hint: only list how many different symbols you see)? \qquad Name the elements:

How many atoms of each element are in each formula? (\#10-13)
10. $\mathrm{H}_{2} \mathrm{O}_{2}$: Hydrogen \qquad ; Oxygen \qquad ;
11. $\mathrm{H}_{2} \mathrm{SO}_{4}$: Hydrogen \qquad ; Sulfur \qquad ; Oxygen \qquad ;
12. NaHCO_{3} : Sodium \qquad ; Hydrogen \qquad ; Carbon \qquad ; Oxygen \qquad
13. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$: Calcium \qquad ; Phosphorus \qquad ; Oxygen \qquad ;

Molecule (M), Compound(C), or Both (B)? (\#14-17)

14. $\mathrm{O}_{2}=$ \qquad
15. $\mathrm{CO}_{2}=$ \qquad
16. $\mathrm{H}_{2} \mathrm{O}_{2}=$ \qquad 17.
$\mathrm{Cu}_{4}=$ \qquad
